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possible forms of constants of motion operator, and discuss the existence or continuity of
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1. Introduction

In classical mechanics, integrability of a Hamiltonian system can be defined as the existence

of a set of n functionally independent constants of motion X1,X2, . . . ,Xn including the

Hamiltonian itself if the system has n degrees of freedom. These constants of motion must

be in involution. The concept of integrability can be extended to so-called superintegrabil-

ity which requires at least one additional constant of motion (minimally superintegrable)

and allows totally n−1 additional constants of motion (maximally superintegrable).1 These

additional constants of motion, however, are not necessarily in involution among each other,

nor with X1,X2, . . . ,Xn−1. In a very similar manner, the notion of (super)integrability

can also be defined in quantum mechanics through well-defined linear constants of motion

operators which are now supposed to be algebraically independent [1 – 4]. In quantum

mechanics, integrability not only simplifies the calculation of energy levels and wave func-

tions, but also provides a complete set of quantum numbers, which characterize the system

completely. Superintegrability, on the other hand, may entail exact solvability. The har-

monic oscillator [2], and the Kepler, or Coulomb system [1] are well known examples of

superintegrability.

1This is due to the fact that the phase space is 2n dimensional and at least one free degree of freedom

has to be left in order to have dynamics in the system.
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Systematic searching for superintegrability in Hamiltonian systems with kinetic en-

ergy quadratic in momenta and with only coordinate dependent potentials was started

quite some time ago [3]. In these works the constants of motion were considered up to

second-order in momenta in order to search for quadratic (super)integrability. Both in

classical and quantum mechanics, second-order integrability of such Hamiltonians mim-

ics the separations of variables which is the first step for exact solvability. Such close

connection doesn’t hold for the systems with velocity dependent potentials V (p,A) [5].

Recently, the (super)integrability of spin-dependent Hamiltonian systems with a

generic scalar potential has been studied in a systematic way up to first-order [6]. There

are other known systems which introduce velocity-dependent interactions without requiring

an external vector potential A. For example, if one allows violation of Lorentz symme-

try at the relativistic level, the extra fields which describe such violation can also induce

velocity-dependent interactions at non-relativistic level. The aim of this study is to system-

atically analyze (super)integrability of a Hamiltonian system (more precisely the hydrogen

atom) with spin-orbit interactions in some Lorentz violating backgrounds both in 2- and

3-dimensions.

There exists a well established framework [7], called Standard-Model Extension (SME),

for the study of the Lorentz and Charge-Parity-Time reversal (CPT ) violation. The Stan-

dard Model Extension is the generalization of the Standard Model (SM) with additional

Lorentz and CPT violating interactions introduced through some tensorial background

fields. It can be considered a low-energy limit of a fundamental theory in which the

Lorentz and CPT symmetries are exact but broken spontaneously when evolved down to

low energy scale, due to the existence of these tensorial background fields. SME is one of

the elegant way to formulate the problem. Of course the coordinate independence of phys-

ical observables are maintained by requiring observer Lorentz invariance which describes

the transformations of coordinates. Lorentz violation considered in the model is so called

particle Lorentz violation which describes rotations and boosts of particles and localized

fields but not background fields in a specific observer’s inertial frame. Formulating the

model in non-Minkowski spacetimes [8] leads to spacetime dependent coupling coefficients.

Our approach here is minimalistic, i.e., constant coefficients.

In this study we consider only the effects of vectorial background couplings aµ and bµ to

the (super)integrability of what we call the Pauli system. Here aµ and bµ are related to the

vacuum expectation values of some vectorial background fields. Seeking (super)integrability

for a Pauli system in such LV background and aiming exact solvability could be of some

interest under certain circumstances. For example, the current bound on b0 [9], the time

component of bµ, is b−1
0 & 10−3 cm and it is much weaker than that on |b|, the space part

of the bµ. So, for a system with timelike bµ coupling the perturbative approach fails if the

effective size of the system is of the order of 10−3 cm, and then the search for an exact

solution becomes unavoidable.

The outline of the paper is as follows. In the next section, section 2, we introduce

the relevant part of the SME Lagrangian and consider the non-relativistic limit. Then, in

section 3, the 2-dimensional Pauli system in LV background is discussed in three separate

cases. In section 4, before discussing the generalization of the problem to 3-dimensions,
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we present the determining equations in the most general form. We then shortly discuss

the perturbative approaches to the system in section 5 and conclude in section 6.

2. The model and its non-relativistic limit

There exist vast number of studies on the SME both at theoretical and phenomenological

levels [10, 11]. Here we work in the QED sector of the SME for electron [12 – 14]. The

QED Lagrangian for electron can be given as

Lelectron =
i

2
ψ̄ Γµ

↔

Dµ ψ − ψ̄Mψ ,

Γµ = γµ + cλµγλ + dλµγ5γ
λ + · · ·

M = m + aµγµ + bµγ5γ
µ +

1

2
Hµνσµν , (2.1)

where Dµ = ∂µ + ieAµ with the vector potential Aµ (f
↔

Dµ g ≡ fDµ g − (Dµf) g), aµ

and bµ are the (pseudo-)vectorial CPT -odd coefficients and the other terms are CPT -even

tensorial coefficients. These are the only terms that are obtained from the SME but Γµ

can have more terms originating from non-renormalizable higher-dimensional operators.

It is clear from the above Lagrangian that LV doesn’t require CPT violation but the

vice versa is true [15]. In this study, we consider the only two CPT -odd vectorial couplings

aµ and bµ and neglect the tensorial ones.2 A comprehensive analysis of field redefinitions

and redundant parameters of the model can be found in ref. [16]. For example, the aµ

term can be absorbed by redefining the fermion field by a phase factor exp(iaµxµ) and

thus the spectrum will be unaffected by such term. Depending on the complexity of the

model (photon interaction, fermion mixings, etc.), this situation could change. A similar

transformation can be found for the bµ case if, for example, a free massless fermion is

assumed, but in general the bµ term is non-trivial. So, in our discussion we keep both aµ

and bµ terms.

We now consider the non-relativistic limit of the Dirac equation for electron starting

from eq. (2.1) with LV vectorial couplings only. We take the external electromagnetic field

as Aµ = (A0, 0). The Dirac equation becomes3

(pµγµ − eAµγµ − aµγµ − γ5bµγµ − m)ψ = 0 , (2.2)

where we adopt the Dirac representation for the γ matrices. For convenience one can define

the energy of the electron p0 = p′0 + m (by extracting the rest energy) so that p′0 becomes

much smaller than m in the non-relativistic limit. If we also assume eA0, |a|, |b| ≪ m, we

obtain the following equation for the 2 × 1 spinor ψ1, which is the large component of ψ,
[

(p′0−m−a0−σ · b)−
1

2m
(σ · (p−a) − b0)Λ−1 (σ · (p−a) − b0)

]

ψ1 = 0 ,

(

1+
p′0−eA0−a0−σ · b

2m

)

≡ Λ , (2.3)

2Note that allowing non-renormalizable higher-dimensional operators induces additional vectorial fields.
3We use the natural units, ~ = 1, c = 1, throughout the paper.
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Rotation C P T CPT

a · p - - - - -

σ · b - + + - -

b0 σ · p + + - + -

Table 1: Properties of LV terms in the Hamiltonian eq. (2.5) under C, P , T , and rotational

symmetries.

where σ = (σ1, σ2, σ3) are the Pauli matrices. Keeping the first two terms in Λ−1 and

making some straightforward manipulations lead to the following equation

i
∂

∂t
ψ1 = HNRψ1 ,

HNR =
p2

2m
+ eA0 −

e

4m2
σ · E × p−

p4

8m3
+

ie

4m2
E · p + HLV ,

HLV = −
1

m
a · p + σ · b−

b0

m
σ · p +

a0

4m2
p2 +

1

4m2
σ · pσ · b , (2.4)

where E is the electric field and we keep up to linear terms in LV parameters, since they are

presumed small, and we also neglect the constant terms. In HNR, the first order correction

terms to the usual Hamiltonian are the spin-orbit, relativistic, and the potential energy

correction, respectively. We assume that the potential energy is spherically symmetric,

V0(r) ≡ eA0(r) so that the term σ · E × p with E = 1
r

dA0

d r
r leads to the usual spin-orbit

interaction σ · L with L the angular momentum operator.

Had we neglected all these three corrections and considered the Lorentz symmetry

preserved, there would be no spin dependence in the system (since we set the external

magnetic field zero) and the spin degree of the electron would become trivial. The only

spin dependence is through σ · L and we intend to keep that term and neglect the other

two whose presence would considerably complicate our study. As seen from eq. (2.4), HLV

also brings spin dependent interactions only through bµ. The last two terms of HLV come

from the second term in Λ−1 expansion and are higher order with respect to the first three

terms of HLV. Hence, we neglect them in the rest of our calculation. We further set m = 1

for simplicity.

Taking into account all of the above remarks, and inserting the Coulomb potential of

the nucleus, the Lorentz violating Hamiltonian HNR for the hydrogen atom follows from

eq. (2.4) as

H =
1

2

(

p2
1 + p2

2 + p2
3

)

+ V0(r) + V1(r)σ ·L − a·p + σ ·b − b0 σ ·p , (2.5)

where V0 = Γ1/r, V1 = Γ2/r
3 with Γ1 = −e2 and Γ2 = −e2/4. In the absence of the

LV terms we call the above Hamiltonian the Pauli system, even though a system with an

external magnetic field is usually considered as Pauli system. The properties of the LV

terms under the Charge (C), Parity (P), Time-reversal (T), and rotational symmetries are

given in table 1.
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In order to investigate the first-order integrability and/or superintegrability we analyze

the commutativity of a general first-order integral of motion4

X = (A0 + A · σ)p1 + (B0 + B · σ)p2 + (C0 + C · σ)p3 + Φ0 + Φ · σ

−
i

2
{(A0 + A · σ)x + (B0 + B · σ)y + (C0 + C · σ)z} , (2.6)

with the Hamiltonian given in eq. (2.5). In eq. (2.6), A, B, C and Φ where A = (A1, A2, A3)

(B, C and Φ are defined similarly) are real functions of r. The commutativity relation

[H,X] = 0 , (2.7)

has second-, first-, and zeroth-order terms in the momenta. Setting the coefficients of each

of these terms equal to zero we get equations determining A0, B0, C0, Φ0 and Ai, Bi, Ci,

Φi (i = 1, 2, 3).

3. The analysis of 2D Pauli system in LV background

In this section we consider the integrability of 2D Pauli system in LV background. There

are three LV terms in the Hamiltonian given in eq. (2.5). For the sake of simplicity we

consider the effects of each term one at a time; the case with non-zero vector coupling

(ai 6= 0), with pure spacelike axial-vector coupling (bi 6= 0), and finally with pure timelike

axial-vector coupling (b0 6= 0).

3.1 Lorentz violation with vector coupling (ai 6= 0):

In the absence of the axial-vector coupling terms in the Hamiltonian, eq. (2.5) in two-

dimensions is given as

H
(aµ 6=0)
2D =

1

2

(

p2
1 + p2

2

)

+ V0(ρ) + V1(ρ)σ3L3 − a1p1 − a2p2 , (3.1)

where again V0 = Γ1/ρ and V1 = Γ2/ρ
3 , Γ1 and Γ2 are constants defined in the previous

section. Since now the Hamiltonian eq. (3.1) is a diagonal matrix we can also choose X

given in eq. (2.6) as diagonal too and write

X
(aµ 6=0)
2D = (A0 + A3σ3)p1 + (B0 + B3σ3)p2 + Φ0 + Φ3σ3

−
i

2
{(A0 + A3σ3)x + (B0 + B3σ3)y} . (3.2)

The requirement of vanishing of the commutator [H
(aµ 6=0)
2D ,X

(aµ 6=0)
2D ] gives us a total of 12

equations for Aν , Bν and Φν , (ν = 0, 3). The technique is to start from the highest order

terms (second-order in our problem) and determine some functions in X
(aµ 6=0)
2D and then

use these solutions to apply the same procedure repeatedly for the remaining orders until

4Throughout the paper, the subscripts x, y and z represent the partial derivatives with respect to the

Cartesian coordinates.
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all unknown functions in X
(aµ 6=0)
2D are fixed. So, let’s start from the second-order. We get

the following six partial differential equations

Aνx = 0 , Bνy = 0 , Aνy + Bνx = 0 , (ν = 0, 3) , (3.3)

which can immediately be integrated to give

Aν = ξν + wνy , Bν = ην − wνx . (3.4)

After introducing eq. (3.4) into the coefficients of the first-order terms and separating

the real and imaginary parts we have 4 determining equations for Φν

Φνx = δν,3−κ[(wκx − ηκ)yV1y − (wκy + ξκ)yV1x − ηκV1] + a2wν ,

Φνy = δν,3−κ[(wκy + ξκ)xV1x − (wκx − ηκ)xV1y + ξκV1] − a1wν , (ν = 0, 3) , (3.5)

where δν,κ is the Kronecker delta function. In order to satisfy the compatibility conditions

for Φν we must have ξν = 0 and ην = 0, ν = 0, 3. Then, eq. (3.5) can be easily integrated

to give

Φν = wν(a2x − a1y) , (ν = 0, 3) , (3.6)

where we used V1 = Γ2/ρ
3 and set the integration constants equal to zero without loss of

generality.

Two of the 12 determining equations, which are indeed the coefficients of the zeroth-

order terms, have not been used up to now. If we introduce all the information gathered

from the coefficients of the higher-order terms into the coefficients of the zeroth-order terms

we get the following two conditions to be satisfied

(a1x + a2y)V1wν = 0 , (ν = 0, 3) . (3.7)

Clearly we must have either (1) both a1 = 0 and a2 = 0, the components of the LV vector

aµ on the plane or (2) wν = 0.

Case (1) corresponds to a LV vector of the form aµ = (a0, 0, 0, a3) or even a pure

timelike vector (a3 = 0). The latter is trivial since the system still remains Pauli system

up to some constants. The former is non-trivial since a non-zero space component a3

is allowed but it doesn’t couple with the electron in xy plane. Therefore, under these

conditions only, the symmetries of the Pauli system are restored. For example, we get the

constant of motion as

X
(aµ 6=0)
2D (a1 = 0 = a2) = −(w0 + w3σ3)(xp2 − yp1)

= −(w0 + w3σ3)L3 , (3.8)

where w0 and w3 are arbitrary constants. As expected both L3⊗I and L3⊗σ3 are constants

of motion. However, they are not different from each other since σ3 trivially commutes

with the Hamiltonian in 2D. Therefore, there is only one extra constant of motion other

than the Hamiltonian and there exists first-order integrability.

For the Case (2), which is indeed the non-trivial one, X
(aµ 6=0)
2D vanishes as seen from

eq. (3.8) and there is no first-order integrability.

– 6 –
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3.2 Lorentz violation with pure spacelike axial-vector coupling (bi 6= 0):

If we only have pure spacelike axial-vector coupling, i.e., bi 6= 0, then in two-dimensions

the Hamiltonian eq. (2.5) and the integral of motion eq. (2.6) are given as

H
(bi 6=0)
2D =

1

2

(

p2
1 + p2

2

)

+ V0(ρ) + V1(ρ)σ3L3 + σ ·b , (3.9)

X
(bi 6=0)
2D = (A0 + A · σ)p1 + (B0 + B · σ)p2 + Φ0 + Φ · σ

−
i

2
{(A0 + A · σ)x + (B0 + B · σ)y} , (3.10)

where V0 = Γ1/ρ and V1 = Γ2/ρ
3 are assumed. Since the Hamiltonian eq. (3.9) is not

diagonal, we can no longer choose the integral of motion operator X
(bi 6=0)
2D diagonal.

In this case, unlike the previous case, there are 12 determining equations coming from

the coefficients of the second-order terms since we have non-diagonal entries which double

the number of equations. The ones from the diagonal elements are exactly the same as

eq. (3.3) and hence the solutions for Aν and Bν , (ν = 0, 3) as given in eq. (3.4), are the

same. From the off-diagonal elements we also have the following 6 equations

2yA1V1 + A2x = 0 , 2yA2V1 − A1x = 0 ,

2xB2V1 + B1y = 0 , 2xB1V1 − B2y = 0 ,

2V1(xA2 − yB2) + A1y + B1x = 0 , 2V1(xA1 − yB1) − A2y + B2x = 0 . (3.11)

However, there is only a so called trivial solution (keeping in mind that V1 = Γ2/ρ
3) for

the system of equations given in eq. (3.11), which is A1 = A2 = B1 = B2 = 0. This has

been shown both by hand and by using the Maple software [17].

When we introduce all of this information into the rest of the determining equations

we get, in addition to the equations given in eq. (3.5) (with of course a1 = 0 and a2 = 0),

the following four equations for the contribution of the coefficients of the first-order terms

2b2w3y + 2yV1Φ2 − Φ1x = 0 , 2b1w3y + 2yV1Φ1 + Φ2x = 0 ,

2b2w3x + 2xV1Φ2 + Φ1y = 0 , 2b1w3x + 2xV1Φ1 − Φ2y = 0 . (3.12)

These equations can be solved and we find that ξν = 0, ην = 0, Φ0 = 0 (ν = 0, 3) are

solutions if either of the following conditions is satisfied

• Case (1): b1 = 0 = b2

• Case (2): w3 = 0 .

Note that the determining equations coming from the coefficients of the zeroth-order terms

are identically satisfied in either case. The constant of motion operator is the same as given

in eq. (3.6) but, since this time there is no condition on w0, L3 ⊗ I becomes a constant of

motion. It is also important to note here that since the Hamiltonian eq. (3.9) has σ1 and

σ2 in it, the fact that σ3 commutes with the Hamiltonian is no longer trivial. Hence, the

term L3 ⊗ σ3 that comes with w3 should now be considered as independent. Obviously, in

– 7 –
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the presence of b1 and b2 (Case (2)) we must have w3 = 0 which leaves L3 ⊗ I as the only

constant of motion. However, Case (1) puts no constraint on the z-component of bµ, and

if the coupling vector is perpendicular to the motion of the plane (bz 6= 0), both L3 ⊗ I

and L3 ⊗ σ3 are constants of motion but of course they are not independent. Therefore,

including the Hamiltonian there are two constants of motion, independent of which of the

above cases are satisfied. The first-order integrability is preserved in the presence of a LV

background b with even arbitrary nonzero components in each direction.

3.3 Lorentz violation with pure timelike axial-vector coupling (b0 6= 0):

When a = 0, b = 0 but b0 6= 0 the Hamiltonian eq. (2.5) and the integral of motion

eq. (2.6) reduce to the following in two-dimensions

H
(b0 6=0)
2D =

1

2

(

p2
1 + p2

2

)

+ V0(ρ) + V1(ρ)σ3L3 − b0

(

σ1p1 + σ2p2

)

, (3.13)

X
(b0 6=0)
2D = (A0 + A · σ)p1 + (B0 + B · σ)p2 + Φ0 + Φ · σ

−
i

2
{(A0 + A · σ)x + (B0 + B · σ)y} , (3.14)

where V0 = Γ1/ρ and V1 = Γ2/ρ
3 are assumed. Again, because of the fact that the

Hamiltonian eq. (3.13) is not diagonal, we can no longer choose the integral of motion

diagonal as in the previous case.

In this case we have 12 equations coming from the coefficients of the second-order

terms. Three of them are exactly the same with eq. (3.3) for ν = 0 and hence we have the

same A0 and B0 as in eq. (3.4). The rest of the determining equations from the coefficients

of the second-order terms can be written as

2b0A2+A3x =0 , 2b0B1−B3y =0 , 2yA2V1−A1x =0 , 2xB1V1−B2y =0 ,

2b0A3−2yA1V1−A2x =0 , 2b0B3+2xB2V1+B1y =0 , 2b0A1−2b0B2−A3y−B3x =0 ,

2b0A3+2V1

(

xA2−yB2

)

+A1y+B1x =0 , 2b0B3+2V1

(

xA1−yB1

)

−A2y−B2x =0 .

(3.15)

There is only a so called trivial solution for the system of equations given in eq. (3.15),

which is A = 0 and B = 0. This is shown again by using the Maple software [17].

After introducing the already found functions A0, B0, A, and B into the determining

equations coming from the coefficients of the first-order terms we have the following 8

partial differential equations for Φ0 and Φ

Φ0x = 0 , Φ0y = 0 ,

Φ1x = 2yV1Φ2 , Φ1y = −2xV1Φ2 − b0(w0 + 2Φ3) ,

Φ2x = −2yV1Φ1+b0(w0+2Φ3) , Φ2y = 2xV1Φ1 ,

Φ3x = −y(w0y+ξ0)V1x+y(w0x−η0)V1y−η0V1−2b0Φ2 ,

Φ3y = x(w0y+ξ0)V1x−x(w0x−η0)V1y+ξ0V1+2b0Φ1 . (3.16)

It is immediately seen that Φ0 = const, which can be taken as zero without loss of generality.

Then we are left with 6 first-order partial differential for Φ. The requirement of the equality

– 8 –
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of the mixed partial derivatives give 3 more equations for Φ and their first-order derivatives.

Now, if we eliminate the first-order derivatives of Φ in this system by using the equations

given in eq. (3.16) we get a system of algebraic equations for Φ. In order to solve this

system the rank of the coefficient matrix has to be equal to the rank of the extended

matrix, determined by adding the non homogeneous vector as a column. A simple analysis

shows that this condition can only be possible if ξ0 = 0 and η0 = 0. In this case we have

the following solution

Φ1 = −
y

x
Φ2 , Φ3 = −

w0

2
+

(

1

2b0x
+

b0

V1, x

)

Φ2 . (3.17)

Finally, we get the following 4 partial differential equations from the coefficients of the

zeroth-order terms

2b0Φ3x − 2V1(yΦ1x − xΦ1y) − (Φ2xx + Φ2yy) = 0 , 2b0(Φ1y − Φ2x) − (Φ3xx + Φ3yy) = 0 ,

2b0Φ3y − 2V1(yΦ2x − xΦ2y) + (Φ1xx + Φ1yy) = 0 , yΦ2 + x(xΦ2y − yΦ2x) = 0 ,

(3.18)

where A = 0, B = 0, A0 = w0 y and B0 = −w0 x are used. Together with eq. (3.17) it is

possible to show that only Φ2 = 0 satisfies simultaneously all the 4 differential equations

in eq. (3.18). Thus, to sum up we find the following set of solutions in the case if b0 6= 0:

A0 = w0 y , B0 = −w0 x , A = 0 , B = 0 ,

Φ0 = 0 , Φ1 = 0 , Φ2 = 0 , Φ3 = −w0/2 . (3.19)

It is seen from the constant of motion operator in eq. (3.14) that we have

X
(b0 6=0)
2D = w0(yp1 − xp2) − σ3w0/2

= −w0(L3 + σ3/2) (3.20)

which is nothing but the total angular momentum J3. It is important to note here that,

as opposed to the case in 2D where there are no LV terms and hence both L3 and J3 are

constants of motion, only J3 is a constant of motion in this case ( b0 6= 0). The fact that

L3 does not commute with the Hamiltonian is something expected from the form of the

LV term in eq. (3.13). However, first-order integrability is still restored.

4. The analysis of 3D Pauli system in LV background

In general in the presence of LV terms we have the Hamiltonian and integral of motion given

in equations eq. (2.5) and eq. (2.6) respectively in 3-dimensional Euclidean spaces. In a

similar fashion as in the two-dimensional case it is also convenient to analyze the problem

in three separate cases. However, it is advantageous to give the determining equations

coming from the coefficients of the second- and first-order terms in full generality (that is,

keeping a,b, and b0 non zero) before analyzing them in case by case.
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i) Determining equations coming from the second-order terms: From the diag-

onal elements it is immediately found that we have the following 6 determining equations

A0x = 0 , B0y = 0 , C0z = 0 ,

A0y + B0x = 0 , A0z + C0x = 0 , B0z + C0y = 0 , (4.1)

from which the following solutions are obvious

A0 = β1 − α3y + α2z ,

B0 = β2 + α3x − α1z ,

C0 = β3 − α2x + α1y . (4.2)

where αi and βi (i = 1, 2, 3) are integration constants. Note that these solutions are inde-

pendent of the LV background couplings so that they hold for each of the cases discussed

below. If we compare eq. (4.2) with eq. (3.4) we see that we have the following correspon-

dences: β1 = ξ0, β2 = η0 and α3 = −w0. After introducing the equation (4.2) into the rest

of the coefficients of the second-order terms and separating the imaginary and real parts of

the coefficients coming from the off-diagonal elements we are left with an over determined

system of 18 partial differential equations for Ai, Bi, Ci (i = 1, 2, 3). These are,

2zA1V1 + A3x + 2b0A2 = 0 , (4.3)

2yA1V1 + A2x − 2b0A3 = 0 , (4.4)

2xB2V1 + B1y + 2b0B3 = 0 , (4.5)

2zB2V1 + B3y − 2b0B1 = 0 , (4.6)

2xC3V1 + C1z − 2b0C2 = 0 , (4.7)

2yC3V1 + C2z + 2b0C1 = 0 , (4.8)

2V1

(

yA2 + zA3

)

− A1x = 0 , (4.9)

2V1

(

xB1 + zB3

)

− B2y = 0 , (4.10)

2V1

(

xC1 + yC2

)

− C3z = 0 , (4.11)

2zV1

(

A2 + B1

)

+ A3y + B3x + 2b0(B2 − A1) = 0 , (4.12)

2yV1

(

A3 + C1

)

+ A2z + C2x + 2b0(A1 − C3) = 0 , (4.13)

2xV1

(

B3 + C2

)

+ B1z + C1y + 2b0(C3 − B2) = 0 , (4.14)

2V1

(

xA1 + yA2 − zC1

)

− A3z − C3x − 2b0C2 = 0 , (4.15)

2V1

(

xB1 + yB2 − zC2

)

− B3z − C3y + 2b0C1 = 0 , (4.16)

2V1

(

xA2 − yB2 − zB3

)

+ A1y + B1x + 2b0A3 = 0 , (4.17)

2V1

(

xA1 + zA3 − yB1

)

− A2y − B2x + 2b0B3 = 0 , (4.18)

2V1

(

xA3 − yC2 − zC3

)

+ A1z + C1x − 2b0A2 = 0 , (4.19)

2V1

(

yB3 − xC1 − zC3

)

+ B2z + C2y + 2b0B1 = 0 . (4.20)

ii) Determining equations coming from the first-order terms: We set the coeffi-

cients of the pi (i = 1, 2, 3) zero at each entry of the commutation relation. After intro-

ducing equations (4.2) and separating the real and imaginary parts, we have the following
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21 partial differential equations, 12 of which are

x r̂ · β V̇1+(β1−yα3+2yΦ3)V1+Φ2z−a · ∇C2−b0(α1−2Φ1)−2(b × C)2 = 0 , (4.21)

x r̂ · β V̇1+(β1+zα2−2zΦ2)V1−Φ3y+a · ∇B3−b0(α1−2Φ1)+2(b ×B)3 = 0 , (4.22)

y r̂ · β V̇1+(β2−zα1+2zΦ1)V1+Φ3x−a · ∇A3−b0(α2−2Φ2)−2(b × A)3 = 0 , (4.23)

y r̂ · β V̇1+(β2+xα3−2xΦ3)V1−Φ1z+a · ∇C1−b0(α2−2Φ2)+2(b × C)1 = 0 , (4.24)

z r̂ · β V̇1+(β3−xα2+2xΦ2)V1+Φ1y−a · ∇B1−b0(α3−2Φ3)−2(b ×B)1 = 0 , (4.25)

z r̂ · β V̇1+(β3+yα1−2yΦ1)V1−Φ2x+a · ∇A2−b0(α3−2Φ3)+2(b × A)2 = 0 , (4.26)

(yα2 + zα3 − 2yΦ2 − 2zΦ3)V1 + Φ1x − a · ∇A1 − 2(b × A)1 = 0 , (4.27)

(xα1 + zα3 − 2xΦ1 − 2zΦ3)V1 + Φ2y − a · ∇B2 − 2(b ×B)2 = 0 , (4.28)

(xα1 + yα2 − 2xΦ1 − 2yΦ2)V1 + Φ3z − a · ∇C3 − 2(b × C)3 = 0 , (4.29)

Φ0x =
(

(yA3x − xA3y) + (xA2z − zA2x) + (zA1y − yA1z) + (C2 − B3)
)

V1

−
(

x(̂r× A)1 + y(̂r× B)1 + z(̂r ×C)1

)

V̇1 − (a × α)1 + b0∇ · A , (4.30)

Φ0y =
(

(yB3x − xB3y) + (xB2z − zB2x) + (zB1y − yB1z) + (A3 − C1)
)

V1

−
(

x(̂r× A)2 + y(̂r× B)2 + z(̂r ×C)2

)

V̇1 − (a × α)2 + b0∇ · B , (4.31)

Φ0z =
(

(yC3x − xC3y) + (xC2z − zC2x) + (zC1y − yC1z) + (B1 − A2)
)

V1

−
(

x(̂r× A)3 + y(̂r× B)3 + z(̂r ×C)3

)

V̇1 − (a × α)3 + b0∇ · C , (4.32)

where V̇1 ≡ dV1/dr, r̂ is the unit displacement vector, a = (a1, a2, a3) and b = (b1, b2, b3)

are the space parts of the Lorentz violating parameters aµ and bµ respectively, and A =

(A1, A2, A3) (B and C are defined similarly) is introduced in the integral of motion X.

The rest of the determining equations from the coefficients of the first-order terms can be

expressed in terms of certain derivative combinations of the determining equations from

the coefficients of the second-order terms given in eqs. (4.3)–(4.20). For completeness they

are symbolically listed below:

2(Eq(4.9))x − (Eq(4.17))y − (Eq(4.19))z = 0 , (4.33)

2(Eq(4.4))x − (Eq(4.18))y + (Eq(4.13))z = 0 , (4.34)

2(Eq(4.3))x + (Eq(4.12))y − (Eq(4.15))z = 0 , (4.35)

2(Eq(4.5))y + (Eq(4.17))x + (Eq(4.14))z = 0 , (4.36)

2(Eq(4.10))y + (Eq(4.18))x − (Eq(4.20))z = 0 , (4.37)

2(Eq(4.6))y + (Eq(4.12))x − (Eq(4.16))z = 0 , (4.38)

2(Eq(4.7))z + (Eq(4.19))x + (Eq(4.14))y = 0 , (4.39)

2(Eq(4.8))z + (Eq(4.13))x + (Eq(4.20))y = 0 , (4.40)

2(Eq(4.11))z + (Eq(4.15))x + (Eq(4.16))y = 0 , (4.41)

where (. . .)x for example represents the derivative of the entire equation with respect to x.
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We do not include the expressions for the 8 determining differential equations coming

from the zeroth-order terms. They are very lengthy and their exact form is not partic-

ularly illuminating. We simplify the equations by imposing the solutions obtained from

the second- and first-order terms, and then they are either trivially satisfied or reduce to

simple constraint equations (like eq. (3.7) in the 2D case), presented for each case in the

following discussion.

In all three cases to be discussed below we have the same integral of motion eq. (2.6) and

the functions A0, B0 and C0 are obtained the same as in eq. (4.2). Therefore, we will briefly

discuss the solutions for the rest of the coefficients by applying the technique used so far.

4.1 Lorentz violation with vector coupling (ai 6= 0):

In this case we have the Hamiltonian eq. (2.5) with b = 0 and b0 = 0. It is found by using

Maple that when b0 = 0 we have the following solution for the 18 determining equations

given in eq. (4.3)–(4.20)

A1 = 0, A2 = zw, A3 = −yw,

B1 = −zw, B2 = 0, B3 = xw,

C1 = yw, C2 = −xw, C3 = 0, (4.42)

where w is an integration constant.

After introducing eq. (4.42) into the rest of the determining equations it is immediately

found from eq. (4.30)–(4.32) that

Φ0 = (α2a3 − α3a2)x + (α3a1 − α1a3)y + (α1a2 − α2a1)z , (4.43)

and then we are left with 9 first-order partial differential equations for Φ = (Φ1,Φ2,Φ3).

These are the equations eq. (4.21)–(4.29) with b = 0 and b0 = 0. In order to solve

this system we express the first-derivatives of Φ and look for the compatibility of the

mixed partial derivatives. The requirement of the equality of the mixed partial derivatives

gives another 9 equations for Φ and its first-order derivatives. Now, introducing the first-

derivatives of Φ which are found from eq. (4.21)–(4.29) into this system, we get a system

of algebraic equations for Φ. In order to have a solution of this algebraic system we must

have β = 0 and w = 0. It is not suprising to require w = 0 since it is the coefficient of the

σ · L term in eq. (2.6) and clearly it cannot commute with the Hamiltonian eq. (2.5) in

the presence of a terms. Setting β = 0 and w = 0 we find

Φ =
α

2
. (4.44)

Finally, if we introduce all the information gathered from the coefficients of the higher-

order terms into the determining equations coming from the coefficients of the zeroth-order

terms, we find that the following 3 conditions must also be satisfied

a1(yα2 + zα3) − (a2y + a3z)α1 = 0 ,

a2(xα1 + zα3) − (a1x + a3z)α2 = 0 ,

a3(xα1 + yα2) − (a1x + a2y)α3 = 0 . (4.45)
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Clearly it is seen that in order to satisfy these 3 conditions we must either have a = 0 or

α = 0. Since the former case implies that there are no LV terms and the latter one indicates

we have no nontrivial first-order integral of motion, we conclude that in the presence of a

terms there is no first-order integrability unlike the 2D case, if a is perpendicular to the

plane of the motion (L3 as discussed is constant of motion). It should be noted that aµ

term can be eliminated with a transformation and in general is not observable physically.

This is only true for simple one fermion models or non-interacting multi-fermion cases but

does not hold for a generic multi-fermion theory.

4.2 Lorentz violation with pure spacelike axial-vector coupling (bi 6= 0):

After setting a = 0 and b0 = 0 in eq. (2.5), we again find the same solution as in eq. (4.42)

for A,B, and C since the 18 equations are identical in the absence of b0. However, from

eq. (4.30)–(4.32), in this case we obtain Φ0 = const, which can be taken as zero without

loss of generality. Then, we proceed in a similar fashion as in the previous case and reach

the same conclusion for the system of 9 differential equations given in eq. (4.21)–(4.29),

with a = 0 and b0 = 0. That is, Φ = α/2 is still the solution together with the requirement

that β = 0 and w = 0. After introducing all the information gathered from the coefficients

of the higher-order terms into the determining equations coming from the coefficients of

the zeroth-order terms, we find, as in the previous case, that the following condition must

also be satisfied

b · α = 0 . (4.46)

Again, we can conclude that in general in the presence of b terms there is no first-

order integrability. However, we may find some integral of motions in some special cases

(e.g. choosing b1 = 0, b2 = 0 and α1 = 0, α2 = 0). In general there is a constant of

motion X
(bi 6=0)
3D = α · J if b is a vector perpendicular to α ( here J represents the total

angular momentum operator). Of course, not all components of α are independent due to

eq. (4.46). For example, if we assume the ith component of b to be nonzero, then one can

alternatively write the constant of motion as

X
(bi 6=0)
3D =

1

bi
[(α × (b × J)]i . (4.47)

where α is otherwise arbitrary. From here one could think that there are two constants

of motion after eliminating one of the components of α but this is not true. Once the

orientation of b is fixed, there is a unique α so that we have one additional constant of

motion, which could be chosen as J3. One noticeable difference from the 2D case is that the

total angular momentum J3 is now conserved, but this is not enough to make the system

first-order integrable.

4.3 Lorentz violation with pure timelike axial-vector coupling (b0 6= 0):

In this case, the set of 18 equations in eqs. (4.3)–(4.20) differs from the previous 2 cases

since b0 6= 0. The only solution of this system is the so called trivial solution which is

A = 0, B = 0 and C = 0. We find also that Φ0 = const, which can be taken as zero
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without loss of generality, and proceed in the same way as in the previous cases. We again

find the same Φ as in eq. (4.44) together with the only requirement β = 0. However, this

time the determining equations coming from the coefficients of the zeroth-order terms are

identically satisfied if we introduce all the information gathered from the coefficients of the

higher-order terms. The form of X
(b0 6=0)
3D is the same as in the previous case but without

the constraint eq. (4.46). There exist however two additional constants of motion since the

third one is related to the first two through an SU(2) algebra.

Thus, we conclude that the Hamiltonian eq. (2.5) with a = 0 and b = 0 is first-order

integrable even though it has LV terms (b0 6= 0). It is easily seen that the components

of J commute with H, hence the system is integrable. We may choose {Ji,J
2,H} as a

commuting set of operators. It is important to note that in the commuting set we choose

J2 but there is no way to get it in X
(b0 6=0)
3D since J2 is a second-order operator. However,

first-order integrals of motion Ji generate J2.

5. Perturbative solutions

The whole idea in this study is to seek, with a systematic method, the first-order inte-

grability/superintegrability of the Pauli system in (axial-)vectorial LV background. The

ultimate goal is to achieve at least a quasi-exact solution. This could be important for the

b0 6= 0 case since the bound on b0 for electron is much weaker than both a and b, and if

the effective size of the system comparable with b−1
0 , the perturbative approach fails. So, it

would be enough to mainly concentrate on the b0 6= 0 case and even perform a second-order

analysis. However, our experience is that it would be much harder to solve the equations

of overdetermined systems analytically, especially if one keeps the spin-orbit term.

Based on our analysis we don’t have first-order superintegrability in either 2D or 3D.

There are first-order integrable cases in 2D under special arrangements but this is only

true in 3D for the b0 6= 0 case, where exact solutions could be of interest. Of course,

neither integrability nor superintegrability does guarantee the separability and existence

of exact solution but either is an important step in finding one. Recently, a perturbative

approach has been carried out for a similar Hamiltonian system in the same LV background

within the QED version of Standard Model Extension [18, 19]. For completeness, we like

to briefly summarize their results. Note that the analysis in ref. [18] includes an external

magnetic field but not the spin-orbit term. A more extensive perturbative analysis for

all types of Lorentz violating couplings is found in [20]. There are also studies [21] on

the violation of Einstein Equivalence Principle, which in principle may lead to Lorentz

violation, by considering some non-gravitational interactions such as Lamb shift and the

anomalous magnetic moment g − 2 of electron in non-metric theories.

For the case with aµ, as discussed in section 4.1, using a field redefinion by a factor of

exp(i aµxµ), the energy is shifted by a constant a0 and wavefunction has an overall phase

factor exp(ia · r), compared to a hydrogen atom without LV background.

For the case b 6= 0, the perturbative approach is applied [18] and energy shifts are

obtained, by an amount proportional to b3ms (to first order). Here ms is the magnetic spin

quantum number. The wave function is unchanged. The energy correction is proportional
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to b3 mj/(l + 1) if the spin-orbit correction is included. Here mj and l are the total

magnetic angular momentum and the orbital angular momentum numbers, respectively.

These corrections are quite small due to experimental bounds on |b|.

The case with b0 6= 0 is indeed interesting. It is shown that using a unitarity transfor-

mation one could relate a real hydrogen with all corrections (spin-orbit, relativistic, and

the so-called Darwin term) to the one with additional LV background of the form b0 σ · p.

The unitarity transformation is U = 1 − i b0(1 + Σ/r)σ · r, up to first order in b0, so that

H
(b0 6=0)
real Hy = U †HrealHyU and Ψ(b0 6=0) = U †Ψ. Here Σ is a constant appropriately chosen

to obtain the correction terms. It is then straightforward to solve the system HrealHy by

applying perturbation theory and to transform everything back to the original system. As

usual there is no contribution to the energy spectrum of the hydrogen atom from the b0

term, up to first order in b0. However, the wave function develops a b0 dependent part.

See the ref. [18] for the details.

6. Conclusion

In this study we have analyzed in a systematic way the integrability of a Pauli system in

a LV background both in two- and three-dimensions. We consider the Hamiltonian which

originates from the non-relativistic limit of the QED part of the so-called Standard Model

Extension. We kept only two types of LV couplings to the electron, the vector type of

coupling represented by aµ and the axial-vector type of coupling by bµ. Since a0 enters as

a constant term in the Hamiltonian, we consider in both 2D and 3D the following three

separate cases; LV from a 6= 0, LV from b 6= 0, and LV from b0 6= 0. The last case is

especially important since perturbative approaches could fail under certain circumstances,

due to weak experimental bounds on b0, and exact solutions might be required. Note that

in our study we kept the spin-orbit correction to the hydrogen atom, partially because the

correction from the LV term with b0 6= 0 could be comparable with the spin-orbit term, as

shown in section 2.

After writing the most general constant of motion operator X in first-order deriva-

tives, we obtained sets of overdetermined differential equations from the vanishing of the

commutator of X with the Hamiltonian. In 2D, first-order integrability is possible if a is

perpendicular to the plane of the motion, when the LV is due to a 6= 0 only. The constant

of motion is one of the components of the angular momentum operator L (L3). Our con-

clusion is the same for b 6= 0 case, with the difference that the vector b can have arbitrary

components in each direction. The last case in 2D is b0 6= 0 and first-order integrability is

restored like in the other cases with one difference: the z-component of the total angular

momentum operator J3 is conserved if the motion is in xy plane.

Based on our 2D results, we extended our discussion into a more realistic 3D picture

by following the same procedure. The first-order integrability disappears for the a 6= 0

case in 3D. For b 6= 0 case, even though J3 becomes a constant of motion, it is not enough

to make the system integrable (since we need another one, unlike 2D case). The first-

order integrability in 3D is retained only for a = b = 0 with b0 6= 0 where we can find

two additional constant of motion operators like J1 and J2. We believe that studying the
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b0 6= 0 case up to second-order is worthwhile in search of superintegrability. This is in

fact the case where exact solutions could be physically relevant. One caveat is that, at the

second order, solving the overdetermined partial differential equations becomes much more

challenging. For completeness, we also summarized the results of a recent paper [18] where

unitary transformations and perturbative approaches are employed for similar systems.
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